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《Intermediate Lateral Autopilots (I) – Yaw orientation control》
◎Yaw orientation autopilot – Lateral autopilot for yaw maneuver◎
○Designed to have the aircraft follow the pilot's yaw rate command or hold the aircraft with a reference

yaw rate signal.   ==> The autopilot will work on the coordinated aircraft
   --- A coordinated A/C will mean A/C with the Dutch roll damper and the coordination controller.
○Typical block diagram:

○Important features of the design:
   ¡ The controlling input turns to the aileron, instead of the rudder.
      --- From the response plot shown in the right figure above, we can see that, in a coordinated A/C,

the aileron becomes a more effective input for yaw motion. (Appendix B)
   ¡ An integrator feedback is included to remove the steady state error between )(tr  and comr
      --- The coordinated A/C is normally with an unstable spiral mode, and the integrator feedback

will further destabilize the system
   ¡ An additional φ  feedback inner-loop is therefore included to stabilize the lateral motion.
      --- A roll angle feedback is most effective for stabilizing the spiral mode.
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○Working block diagram
   ¡ The block diagram shows

what is implemented.
   ¡ The roll angle feedback is replaced with a roll rate feedback.
      --- Roll rate signal is much easier to obtain than the roll angle signal.
      --- As the turn gets steady, 0=φ&  and the roll rate feedback terminates (self-washout).
○A/C model for the design:
   ¡ Require aδ  to φ  and aδ  to r  transfer

functions of the coordinated A/C.
   ¡ Approximated model estimated from

the response data (of the coordinated
A/C) will be used.

      --- True model of the coordinated A/C
is complicated to compute (see
Appendix C).

   ¡ The following fifth order model was
estimated for the coordinated A/C
presented in p.84 of this note:

)(
)0170](08615161)[1793)(4274(

)9671)(7670)(4068(76.1)( s
.si..s.s.s

.s.s.s
sr aδ

−±+++
−++=

)(
)0170](08615161)[1793)(4274(

i]74507291)[4884(262.7)( s
.si..s.s.s

..s.s
s aδφ

−±+++
±++−=

servoea

r
s
1Kr Kφ

φ
Aircraft .rcom eb

CoordinatedAileron
δa

0 5 10 15 200 5 10 15 20

0.1

0

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

-0.7

0

-0.5

-1

-1.5

-2

-2.5

-3

-3.5

True response data The 5th order model

r(t)φ(t)



91

○ Inner-loop analysis
   ¡ Inner-loop block diagram:

      --- We have retained the roll angle feedback format, to simplify the analysis.
      --- A negative gain aileron servo is used, because that )(/)( ss aδφ  has a negative gain.

      --- The spiral mode will be stabilized, but the Dutch roll mode will suffer, by the inner-loop
feedback. However, the later will regain its nice damping with the outer-loop feedback.

      --- 625.0=φK  corresponds to the highest stability for the spiral mode.
      --- However, a zero at 767.0−=s  will appear in the outer-loop locus. If not removed, this zero

will stop the outer-loop integrator pole from going left.
      --- 278.0=φK  will produce a inner-loop CL pole to cancel the outer-loop zero at 767.0−=s
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○ Outer-loop analysis:
   ¡ The numerator of

the loop transfer
function has been
changed from the numerator of )(/)( ss aδφ  to the numerator of )(/)( ssr aδ .

      --- Because that the two feedback loops are for the same controlling input, change in feedback
signal is equivalent to change in the numerator of the corresponding model.
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○Closed-loop simulation of the yaw orientation autopilot:
   ¡ The simulated design was with 278.0=φK  and 38.1=rK .
      --- For the coordinated A/C, we have used the example presented on p.84 of this note.

      --- Basically, all lateral controllers discussed thus far perform as they are designed to.
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《Intermediate Lateral Autopilots (II) – Heading Autopilot pilot》
◎Heading autopilot: A displacement autopilot for yaw◎

○Preliminaries about the autopilot:
  ¡ Design goal: To have the aircraft follow a reference heading signal comΨ
     --- In general, Ψ  is the heading of the A/C in the horizontal plane.
     --- For small bank angle, 1<<φ , we will have Ψ≈Ψ= && φcosr ; hence, ϕ=≈Ψ sr /
     --- As a result, we can treat comΨ  as a yaw angle command comϕ .
     --- comϕ ( comΨ ) signal may be generated through integrating comr  in a pilot operated maneuver

or be sensed by a directional gyro in an automatic flight control loop.
  ¡ Again, this autopilot will work on the coordinated aircraft
○Typical block diagram:

   ¡ A roll angle feedback inner-loop is kept here for stabilization.
   ¡ An integrator is also adopted to ensure steady state command following.
   ¡ A zero at 0, >−= zzs  is included to attract the locus to enter the LHP.
      --- The ϕ -feedback introduces a pole at 0=s  to the system. With an integrator control, the

outer-loop locus from the double integrator will not enter the LHP without a zero nearby.
   ¡ The inner-loop portion of this design is the same as that of the yaw orientation autopilot.
   ¡ We will go right with the outer-loop locus analysis. We will also set 278.0=φK .
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○Outer-loop root locus:
   ¡ Please refer this block diagram

to that of the yaw orientation
autopilot design.

   ¡ Note that this block diagram is
for root locus analysis only. For the real system, its output  is the yaw angle ϕ .

○The outer-loop locus

   ¡ Two complex pole pairs result.
      --- The Dutch roll pair will increase in stability, and is of no concern here.
      --- The dominant pair will loose its obtainable damping ratio with increasing value of z .
      --- If a damping ratio of 0.707 is a specification, then 125.0=z  is the upper bound for z .
   ¡ The zero at zs −=  will also attracts a CL pole near by. Hence, a smaller z  is not desirable,
      --- A trade off design is necessary. Final choice may be determined from a CL simulation.
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○Closed-loop system response:

   ¡ This simulation is performed with 1.0=z  and 49.1=βK , and on a coordinated A/C.
   ¡ The heading error of the A/C is forced to zero at the steady state.
   ¡ In addition, because that 0)(lim 0 =→ tt φ . the assumption, comcom Ψ≈ϕ , or in a more general

sense, Ψ≈ϕ  for any ϕ , is valid.
      --- This result will allow us to control the A/C heading through control of the yaw angle ϕ .
   ¡ However, a large peak value of the bank angle occurred during the maneuver.
      --- With a peak φ  that equals comΨ6.1 , a 

o30 turn maneuver would produce a peak φ  of 
o50

      --- Normally, rad5.030 ≈o  will be the limit for φ  before the passengers begin to feel
uncomfortable, or even panic, about the fight.

      --- The large peak value in φ  is a result of the large yaw rate that occurs during the maneuver.
      --- Some form of the improvement on the heading pilot design is necessary.
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◎Improved design:  Heading autopilot with a yaw limiter◎
○Remedy to the peak surge in bank angle:
   ¡ First of all, the following equivalent form of the heading autopilot can be drawn:

==> A heading autopilot is a heading feedback outer-loop to a yaw orientation autopilot.
      --- Implementing the heading autopilot in this form will require differentiation on the heading

command comΨ . However, any noise amplification due to this differentiation will be
restored by the integrator inside the second feedback loop.

   ¡ Since we regard the large peak value in φ  is a result of the large yaw rate that occurs during the
maneuver., we can improve this effect by limiting the yaw rate as follows:

      --- A saturation limit on comr  is installed.
○Design of the yaw rate limiting circuit:
   ¡ Assume that a rad5.030 ≈≤ oφ  is sought.
   ¡ CL simulation of the yaw orientation autopilot reveals that

the ratio between φ  and r  will be about 1:5 .
   ¡ Then, a limit of comr  can be set at sec/1.0 radrcom ≤ .
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《Intermediate Lateral Autopilots (III) – Roll orientation control》
◎Roll orientation autopilot – A command following control for roll◎
○Definition of the problem:
   ¡ Design an autopilot to have the A/C follows the pilot's roll angle command or hold the aircraft

with a reference roll angle.
   ¡ The autopilot will also work on the coordinated aircraft
○Typical block diagram
      --- A roll rate feedback

inner-loop is kept for
stability improvement.

   ¡ The feedback structure is equivalent to a proportional plus differentiator (PD) control:
      --- Mathematically, )]())()(([)( 21 sssKKse coma

φφφδ
&−−=

                                )()()( 2121 sKsKsKK com φφ +−=
      --- Equivalent block diagram:

       ==> The PD control structure seems indicate that steady state output error may persist.
○Dynamic model of the coordinated A/C and of the aileron servo:
   ¡ For the same coordinated aircraft used in the yaw orientation autopilot design, we have:
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      --- A positive gain will result for the overall system; hence, a 180-degree locus will apply.
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○Closed-loop system of the design

   ¡ The leftward moment of the spiral model will increase with larger value of 2K .
   ¡ The following CL system is also obtained for the selected controller gains:
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      --- A dominant CL pole at 3.1−=s  results, indicating a fast CL response (in about3 sec).
      --- Also, with 005.1)( 0 ==sCL sTF , a %5.0  steady state error also results for a step )(scomφ
      --- For a PD feedback system, this near perfect output following is unusual.
      --- The fact is that the spiral mode of the open-loop model, being so close to the origin, acts like

an integrator, thereby squeezing out the steady state output error.
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◎Roll orientation autopilot – A rate command version◎
○Address the problem:
   ¡ A roll angle command is used in the previous design.
   ¡ In a manual maneuver, the pilot’s control stick input normally represents a roll rate command.
   ¡ Need to provide the pilot with a capability to maneuver the A/C with a roll rate command.
○Block diagram of a roll orientation autopilot with a roll rate command:

      --- A roll rate feedback inner-loop is still kept for stability improvement.
      --- An integrator is also included to ensure the rate command following.
   ¡ The CL system of this design is exactly the same as that of the previous design.
      --- For the same A/C and the same controller gains, the CL system will remain as
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      --- Again, a nice steady state command following will results for a step )(scomφ&
○Closed-loop system response to a pulse roll rate command:

with aileron servoK2 K1
Coordinated A/C

ex a
eδ-

φcom eφ s
1 φ

..

0 5 10 15 20 25 30
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

φcom

.
φ(t)
.

Zero steady
state error φ(t) r(t)


